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RESUMO

O reconhecimento facial se tornou um método amplamente utilizado para autenticação e
identificação de usuários, com aplicações em vários domínios, como acesso seguro e localização
de pessoas desaparecidas. O sucesso dessa tecnologia é amplamente atribuído ao aprendizado
profundo, que aproveita grandes conjuntos de dados e funções de perda eficientes para obter
recursos discriminativos. Apesar de seus avanços, o reconhecimento facial ainda enfrenta
desafios em áreas como explicabilidade, viés demográfico, privacidade e robustez contra
envelhecimento, variações de pose, mudanças de iluminação, oclusões e expressões. Além
disso, o surgimento de regulamentações de privacidade levou à depreciação de vários conjuntos
de dados bem estabelecidos, levantando preocupações legais, éticas e de privacidade. Para
abordar essas questões, a geração de dados faciais sintéticos foi proposta como uma solução.
Essa técnica não apenas atenua as preocupações com a privacidade, mas também permite
uma ampla experimentação com atributos faciais tendenciosos (i.e. tom de pele e cabelo),
ajuda a aliviar o viés demográfico e fornece dados suplementares para melhorar os modelos
treinados em dados reais. Essas características foram consideradas em competições, como o
Face Recognition Challenge in the Era of Synthetic Data (FRCSyn) e o Synthetic Data for Face
Recognition Competition (SDFR), que foram organizadas para explorar as limitações e o potencial
da tecnologia de reconhecimento facial treinada com dados sintéticos. Este estudo compara a
eficácia de conjuntos de dados faciais sintéticos estabelecidos com diferentes técnicas de geração
em tarefas de reconhecimento facial. Foram avaliadas as métricas de precisão, rank-1, rank-5 e
taxa de verdadeiro positivo (TPR) a uma taxa de falso positivo (FPR) de 0,01%, em oito conjuntos
de dados principais, fornecendo uma comparação de abordagens que não são explicitamente
contrastadas na literatura. Os experimentos destacam as várias técnicas usadas para abordar
o problema da geração de dados faciais sintéticos e apresentam uma avaliação abrangente do
campo. Os resultados demonstram a eficácia de vários métodos na geração de dados faciais
sintéticos com variações realistas, destacando as várias técnicas usadas para abordar o problema.
Concluiu-se que as técnicas de geração de dados sintéticos, como modelos de difusão, GANs
e modelos 3D, avançaram na replicação da complexidade do mundo real para reconhecimento
facial. No entanto, a lacuna em relação aos dados reais ainda existe, exigindo pesquisas futuras.

Palavras-chave: Reconhecimento facial. Biometria. Dado Facial Sintético.



ABSTRACT

Facial recognition has become a widely used method for user authentication and identification,
with applications in various domains such as secure access and missing person location. The
success of this technology is largely attributed to deep learning, which leverages large datasets and
efficient loss functions to achieve discriminative features. Despite its advances, facial recognition
still faces challenges in areas such as explainability, demographic bias, privacy, and robustness
against aging, pose variations, lighting changes, occlusions, and expressions. Furthermore,
the emergence of privacy regulations has led to the deprecation of several well-established
datasets, raising legal, ethical, and privacy concerns. To address these issues, synthetic facial
data generation has been proposed as a solution. This technique not only mitigates privacy
concerns but also allows for extensive experimentation with biasing facial attributes (i.e. skin
tone and facial hair), helps alleviate demographic bias, and provides supplementary data to
improve models trained on real data. This characteristics were considered in competitions, such
as the Face Recognition Challenge in the Era of Synthetic Data (FRCSyn) and the Synthetic Data
for Face Recognition Competition (SDFR), have been organized to explore the limitations and
potential of facial recognition technology trained with synthetic data. This study compares the
effectiveness of established synthetic facial datasets with different generation techniques on facial
recognition tasks. Were evaluated the accuracy metric, rank-1, rank-5, and True positive rate
(TPR) at a False positive rate (FPR) of 0.01%, on eight leading datasets, providing a comparison
of approaches that are not explicitly contrasted in the literature. The experiments highlight
the various techniques used to address the problem of synthetic facial data generation and
present a comprehensive assessment of the field. The results demonstrate the effectiveness of
various methods in generating synthetic facial data with realistic variations, highlighting the
various techniques used to address the problem. It was concluded that synthetic data generation
techniques, such as diffusion models, GANs, and 3D models, have advanced in replicating
real-world complexity for facial recognition. However, the gap to real data still exists, requiring
future research.

Keywords: Facial recognition. Biometrics. Synthetic Facial Data.
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1 INTRODUCTION

Face recognition (FR) has rapidly become a prevalent method for authenticating and identifying
users due to its convenience and efficiency. This technology is widely employed in various
sectors, including security, where it is used to grant access to secure facilities or devices, ensuring
that only authorized individuals can enter sensitive areas or use specific equipment. In law
enforcement, face recognition plays a crucial role in identifying suspects, solving crimes, and
maintaining public safety by matching faces captured in surveillance footage with criminal
databases. Additionally, it serves humanitarian purposes, such as locating missing persons
by comparing images with those in public records or social media. The integration of face
recognition technology into everyday life is expanding at an unprecedented rate, driven by
advancements in artificial intelligence and machine learning. It is now embedded in smartphones,
allowing users to unlock their devices with facial recognition, and in social media platforms,
where it helps tag and organize photos.

Despite its widespread adoption and the technological advancements that have propelled
facial recognition into mainstream use, this technology is not without significant challenges and
controversies. One of the most pressing issues is its susceptibility to discriminatory effects and
demographic bias, which can undermine its reliability and fairness. These biases often stem from
unbalanced data sampling, where certain demographic groups are underrepresented, leading to
skewed datasets that do not accurately reflect the diversity of the population. The processes of
data collection and labeling can also introduce biases, as they may inadvertently favor certain
demographic or gender groups over others.

Moreover, the approaches used in data preprocessing and modeling can exacerbate these
biases, resulting in algorithms that perform unevenly across different demographic groups. This
has been fundamented by a series of comprehensive studies conducted by the National Institute
of Standards and Technology (NIST) in the United States, spanning from 2002 to 2019 (Grother
et al., 2019a, 2018, 2019b). These studies revealed significant racial and gender biases in many
widely used facial recognition algorithms, highlighting that these systems often misidentify
individuals from minority groups at disproportionately higher rates compared to those from
majority groups.

In addition to issues of bias, facial recognition technology raises substantial privacy
concerns. The potential for privacy violations is considerable, as the technology can be used for
mass surveillance without individuals’ consent, leading to unauthorized tracking and profiling.
These challenges underscore the urgent need for rigorous ethical standards, transparent practices,
and robust regulatory frameworks to ensure that facial recognition technology is developed and
deployed in a manner that is equitable, accurate, and respectful of individual privacy rights.

The facial recognition technology relies on image processing to extract features from
faces. These features are then used as input to pattern recognition methods that can identify and
match faces. Increasingly, these pattern recognition methods are based on machine learning,
such as deep learning networks. Deep learning has been shown to be effective in extracting
information from facial images. Trained on large data sets of facial images, deep learning models
can learn to identify and extract a wide variety of features from faces, such as the shape of the
face, the eyes, the nose, the mouth, and the eyebrows.

Face recognition is difficult because faces are complex and variable. The same face can
look different depending on the viewing angle, lighting color and direction, and facial expressions.
Additionally, faces can be occluded by hair, glasses, masks, or other objects.
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Recently, the emergence of facial recognition technology has witnessed a transformative
shift with the integration of synthetic data, marking a significant evolution in the field. As
traditional methods for collecting facial data faced challenges such as privacy concerns and
limited datasets, synthetic data has emerged as a groundbreaking solution. By generating
computer-generated images that mimic real-world facial features, researchers and developers can
now create vast and diverse datasets for training facial recognition algorithms.

This not only addresses the ethical concerns associated with using real people’s data
but also allows for a more comprehensive and representative training set. The incorporation of
synthetic data in facial recognition has sparked significant interest among research institutions,
fostering a dynamic environment of innovation and discovery. Researchers are increasingly
focused on developing more accurate, inclusive, and privacy-aware facial recognition systems.
As academic competition continues to drive progress, the synergy between facial recognition and
synthetic data holds the potential to transform the landscape of biometric technology, providing
robust and ethical solutions for various applications, ranging from security to academic research.

1.1 MOTIVATION

In research carried out on the state of the art in this topic, it was found that there are still many
gaps in knowledge and multiple possibilities for advancement in this area of research, which
justifies the need for further studies with the aim of improving this technology.

To address these gaps and possibilities for advancement, multiple competitions related
to this topic were proposed. The 1st and 2nd editions of the FRCsyn competition (Melzi et al.,
2024; DeAndres-Tame et al., 2024) aimed to answer the following questions: What are the
limitations of FR technology trained only with synthetic data? Can synthetic data help alleviate
current limitations in FR technology? For the first edition, the organizers proposed subtasks
that invited the participants to use synthetic data alone and in conjunction with real data to
mitigate demographic bias and bring performance improvement. In the second edition, they
extended to an unconstrained number of synthetic images, maintaining the same objectives.
With a related objective, SDFR competition (Shahreza et al., 2024) proposed that participants
submit original solutions to generate synthetic data for performance improvement and mitigate
the synthetic-to-real gap.

As the competitors are encouraged to submit models with already established synthetic
datasets or generate new ones, a lot of characteristics need to be considered. For example, the
used dataset needs to have sufficient intra-class variations and changes in pose, aging, expressions,
occlusions, and illumination. Adding to that, the datasets need to have sufficient interclass
variations, for the proposed models to generalize to new unseen data. Given these challenges,
generating sufficient intra-class and interclass is an active area of research.

1.2 OBJECTIVE

This work aims to compare the accuracy, rank-1, rank-5, and True positive rate (TPR) at a False
positive rate (FPR) of 0.01% of different generated synthetic facial datasets. Through these
experiments, this work seek to provide a comprehensive assessment of the field, contrasting
different approaches and highlighting the various techniques employed for this purpose.



14

1.3 OUTLINE

The following chapters are divided as follows: Chapter 2 gives information about the facial
recognition task theoretical background, which includes the preprocessing techniques used and
different loss functions and backbones employed. Chapter 3 presents an overview of facial
recognition methods and synthetic dataset generation state-of-the-art, compared in this work.
Chapter 4 describes the methodology used to compare the datasets, which includes the backbone
and loss function used to train and the selected datasets for evaluation. Chapter 5 discusses the
results obtained by comparing the different data generation methods used. Chapter 6 will present
the conclusion of this work, by including any limitations found during the process.
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2 THEORETICAL FUNDAMENTATION

2.1 FACIAL RECOGNITION WITH HANDCRAFTED FEATURES

Facial recognition is an active research topic in the computer vision area. At first, the problem
was treated in non-deep learning ways. The method Eigenface, proposed by Turk and Pentland
(1991), transformed an image to a 1D feature, and use Principal Component Analysis (PCA) to
discriminate the low dimensional space. They adopted the euclidean distance to measure the
similarity of a given query face in respect to a gallery. Fisherface, proposed by Belhumeur et al.
(1997) pointed out that PCA maximizes the variance of all samples in the low dimensional space.
Also, Eigenface did not take into account the class label, while Fisherface use this information
and used Linear Discriminant Analysis (LDA) for dimensionality reduction, which maximized
the interclass and intraclass variance ratio.

Another upgrade in performance was brought by Support Vector Machine (SVM). As
SVM and feature extractors can be decoupled, many solutions have been proposed. Déniz et al.
(2003) used Independent Component Analysis (ICA), used by Oja and Hyvarinen (2000) for
feature extraction, and then used SVM to predict the face ID. Kong and Zhang (2011) designed
fast least squares to accelerate the training process. Jianhong (2008) combined kernel PCA and
least squares SVM to get a better result.

One of the most used feature extractor, Local binary patterns (LBP), was employed in
many facial recognition methods with handcrafted features. Ahonen et al. (2004) adopted LBP
to extract features of all regions from one face image, and use those features to make a histogram
of features and obtain a final embedding. Wolf et al. (2008) proposed an improved descriptor
based on LBP, and achieved a result with better accuracy. Tan and Triggs (2010) refined LBP
and proposed Local Ternary Patterns, with a higher tolerance to image noise.

2.2 CONVOLUTION NEURAL NETWORKS

In the early 2010s, facial recognition shifted the focus to deep neural networks as the main
solution to the problem. This is because the filed has taken a twist with the rise of the Artificial
Neural Network (ANN). This biologic inspired model has shown the potential to supplant other
machine learning methods in common tasks, such as image classification and object recognition.

One of the most impressive forms of ANN architecture is the Convolutional Neural
Network (CNN). These models are used to solve difficult pattern recognition tasks, with a precise
and simple architecture, as showed in Figure 2.1, and are briefly described in the following
paragraphs.

The convolutional layer is the primary building block of a CNN. The layer’s parameters
consist of a set of learnable filters (or kernels), which have a small receptive field but extend
through the full depth of the input volume. As the filter slides (or convolves) around the input
image, it produces a feature map that gives the responses of that filter at every spatial position.
The convolution operation captures the local dependencies in the input. After each convolution
operation, an activation function is applied to introduce non-linear properties to the system,
enabling it to learn more complex functions. A commonly used activation function is the Rectified
Linear Unit (ReLU), which applies a non-linear thresholding operation, setting all negative values
in the feature map to zero while keeping the positive values.
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Figure 2.1: An example of a CNN architecture, proposed by LeCun et al. (1998)

The max pooling layer is responsible for reducing the dimensionality of each feature
map but retains the most important information. Pooling can be of different types: max pooling,
average pooling, etc. Max pooling takes the maximum value from each window of a predefined
size and stride, effectively reducing the spatial dimensions of the input volume.

After several convolutional and pooling layers, the high-level reasoning in the neural
network is done via fully connected layers. Neurons in a fully connected layer have full
connections to all activations in the previous layer, as seen in regular neural networks. Their
activations can hence be computed with a matrix multiplication followed by a bias offset. In
classification tasks, the final fully connected layer is often followed by a softmax (for multi-class
classification) or a logistic (for binary classification) layer, which provides the classification
scores for each class.

This networks need training to achieve the desired output convergence. The training
process starts with a batch of images represented by a matrix of pixel values and passing through
the convolutional and pooling layers, the network learns to identify various features in the input.
Early layers may detect simple features like edges and curves, while deeper layers can identify
more complex features like shapes or specific objects.

After feature extraction, the fully connected layers act as a classifier on top of these
features and assign a probability for the input image being in a specific class. During training, the
CNN uses backpropagation to adjust its weights and biases to minimize the difference between
the predicted output and the actual label of the input image. This process requires a loss function
to quantify the error and an optimization algorithm, like Stochastic gradient descent (SGD),
Adaptive Moment Estimation (Adam) etc., to adjust the parameters based on gradients computed
during backpropagation.

2.3 FACIAL RECOGNITION WITH DEEP LEARNING

Facial recognition technology has experienced remarkable advancements over the years, primarily
fueled by the evolution of deep learning architectures. A significant breakthrough in this domain
occurred with the introduction of AlexNet, proposed by Krizhevsky et al. (2012). AlexNet’s
success in achieving unprecedented results on the ImageNet dataset marked a turning point,
sparking widespread adoption of deep learning methods in facial recognition and setting the
stage for further innovations.

Following AlexNet, several key deep learning architectures emerged, each contributing
uniquely to the field. VGGNet, developed by Simonyan and Zisserman (2014), emphasized
simplicity and depth. By employing smaller 3x3 convolutional filters and deeper networks,
VGGNet demonstrated that increasing network depth could enhance performance, influencing
the design of future CNN’s.
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GoogleNet, designed by Szegedy et al. (2015), also known as Inception, introduced
a novel approach with its Inception module. This architecture allowed for more efficient
computation by utilizing multiple filter sizes in parallel, reducing computational costs while
maintaining high accuracy. GoogleNet’s efficiency made it particularly suitable for large-scale
applications, further advancing the capabilities of facial recognition systems.

ResNet, introduced by He et al. (2016), addressed the vanishing gradient problem that
often plagued deep networks. By incorporating residual connections, ResNet enabled the training
of extremely deep networks, significantly improving accuracy across various tasks, including
facial recognition. This innovation underscored the potential of deep learning architectures to
push the boundaries of what was previously achievable.

In addition to these architectural advancements, notable contributions specifically
targeting facial recognition emerged. DeepFace, proposed by Taigman et al. (2014), utilized a
nine-layer convolutional network with a crucial facial alignment step. This approach highlighted
the importance of pre-processing steps like alignment in enhancing recognition accuracy,
demonstrating the potential of deep learning in refining facial recognition systems.

Another significant contribution came from the authors Schroff et al. (2015), with the
introduction of FaceNet, which employed a convolutional network trained with triplet loss. This
innovative loss function aimed to minimize the distance between an anchor sample and a positive
sample (of the same class) while maximizing the distance between the anchor and a negative
sample (of a different class), thereby enhancing the distinguishability of learned features.

Initially, facial recognition models relied heavily on the softmax loss function, combined
with well-designed CNNs and large-scale training datasets. However, as the field progressed,
new loss functions were developed to address challenges such as intra-class variations caused
by occlusions, illumination changes, pose differences, and expression variations. A pivotal
advancement came with the introduction of triplet loss in FaceNet, which provided a robust
solution to these challenges by increasing the distance between positive and negative samples
using a margin factor, thereby enhancing the distinguishability of the learned features, as defined
in equation 2.1.  𝑓 (𝑥𝑎) − 𝑓 (𝑥𝑝)

2
2 + 𝛼 < ∥ 𝑓 (𝑥𝑎) − 𝑓 (𝑥𝑛)∥2

2 (2.1)

The components of equation 2.1, 𝑥𝑎, 𝑥𝑝 and 𝑥𝑛, represent the anchor, positive and
negative samples, respectively, 𝛼 is a margin and 𝑓 (·) represents a nonlinear transformation
embedding an image into a feature space.

Nowadays, the most prominent base loss functions are based on softmax, ie., Shep-
hereFace, Cosface and Arcface. The ShephereFace loss function, proposed by Liu et al. (2017)
introduced the ideia of angular margin. Unlike traditional softmax loss, SphereFace modifies the
decision boundary to include an angular margin. This modification encourages the network to
learn features that are not only separable but also have a larger angular distance between them.
However, this loss function required a series of approximations in order to computed, which
resulted in an unstable training of the network. Also, the authors needed to include the standard
softmax loss to stabilize the training. Empirically, the softmax loss tends to dominate the training
process due to the nature of the integer-based multiplicative angular margin. This margin causes
the target logit curve to become extremely steep, which in turn makes it difficult for the model to
converge effectively.

On the other hand, Cosface, introduced by Wang et al. (2018), directly adds cosine
margin penalty to the target logit, and obtain better performance. Also, admits much easier
implementation and relieves the need for joint supervision from the softmax loss. Lastly, Arcface,
developed by Deng et al. (2019a), is one of the most used margin based loss function, based on
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methods submitted to competitions like (Deng et al., 2021). This loss function directly optimizes
the geodesic distance margin on a hypersphere. This approach ensures that the learned features
are not only separable but also tightly clustered around their respective class centers, which is
crucial for distinguishing between different identities.

The equation 2.2 define the mentioned margin based loss functions.

𝐿 = − 1
𝑁

𝑁∑︁
𝑖=1

log
𝑒𝑠(cos(𝑚1𝜃𝑦𝑖+𝑚2)−𝑚3)

𝑒𝑠(cos(𝑚1𝜃𝑦𝑖+𝑚2)−𝑚3) + ∑𝑛
𝑗=1, 𝑗≠𝑦𝑖 𝑒

𝑠 cos 𝜃 𝑗

(2.2)

By adjusting the parameters 𝑚1, 𝑚2, and 𝑚3, it is possible to define different loss
functions used in facial recognition:

• SphereFace: Defined by 𝑚1 = 1.35, 𝑚2 = 0, 𝑚3 = 0

• CosFace: Defined by 𝑚1 = 1, 𝑚2 = 0, 𝑚3 = 0.35

• ArcFace: Defined by 𝑚1 = 1, 𝑚2 = 0.5, 𝑚3 = 0

These configurations adjust the angular margin and the loss function to enhance class
discrimination in facial recognition tasks.

2.4 FACIAL RECOGNITION SYSTEM PIPELINE OVERVIEW

2.4.1 Preprocessing step

The basic steps of using deep learning to authenticate a facial image against a gallery of known
faces are as shown in Figure 2.2.

Figure 2.2: Overview of a facial recognition system. From Guo and Zhang (2019).

It starts with a data set (gallery) that includes images of known people, such as employees,
students, or customers. The images should be taken in a variety of lighting conditions and from
different angles. The pipeline involves preprocess the data including normalizing the images and
cropping out any unnecessary background. It may also involve resizing the images and aligning
them.

2.4.2 Deep learning feature extractor and facial matcher

After this, the preprocessed images are fed into a CNN for extracting features from the facial
image. Regardless of the actual architecture used, all CNNs trade off spatial dimensions for
channel depth through the layers. At the top-most layer, the feature maps may be flattened to
form a feature vector. To authenticate a facial image, it compares the feature vector extracted
from the query image to the feature vectors of the known faces in the gallery. The closest match
is the identity of the person in the facial image.
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Comparing the feature vectors can be done using a similarity or dissimilarity metric,
such as the Euclidean distance or the cosine similarity. The most commonly used is the cosine
similarity, which is a measure of the cosine of the angle between two vectors. In the case of face
recognition, the cosine similarity 𝑠 between two feature vectors 𝑥 and 𝑦 is described in Equation
2.3.

𝑠(x, y) = x𝑇y
| |x| | | |y| | (2.3)

This a measure of the similarity between the two vectors. The closer the cosine similarity
is to 1, the more similar the two feature vectors are. If the objective is to find the closest identity
to a given query image in a given database, this processes is called facial identification, and can
be evaluated using rank-x accuracy and Cumulative Matching Characteristics curves (CMC).
On the other hand, facial verification involves "verifying if the person belongs to who they
claim to be", an its a one-to-one matching problem, and can be evaluated using accuracy and a
Receiver-operating characteristic curve (ROC).

Facial recognition technology has undergone a remarkable transformation with the
advent of deep learning architectures, which have effectively surpassed earlier methods reliant
on handcrafted features. CNNs have spearheaded this revolution by adeptly capturing complex
patterns and subtle nuances in facial features, leading to ground-breaking innovations such
as AlexNet and ResNet. These architectures have successfully addressed challenges like the
vanishing gradient problem, significantly enhancing accuracy and efficiency in facial recognition
systems.

The section 3, called Studied Works, describes the methods that will be compared in
this study, reflecting the state of the art in synthetic facial generation techniques.
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3 STUDIED WORKS

Advances related to the topic of facial recognition has continued to push the state of the art on
facial recognition. Due to the release of large scales datasets of public identities crawled from the
web like MS1MV2 (Deng et al., 2019a), Glint360k (An et al., 2021), Webface260M (Zhu et al.,
2021) and its subset versions are the mostly commonly used for training. For testing, smaller
datasets are used such as AGEDB (Moschoglou et al., 2017), CFP (Sengupta et al., 2016), LFW
(Huang et al., 2008), ĲB-A,ĲB-C (Klare et al., 2015), ĲB-B (Whitelam et al., 2017).

Also, the development of new loss functions, where the most popular are named Arcface
(Deng et al., 2019a), Adaface (Kim et al., 2022), MegaFace (Meng et al., 2021), and CosFace
(Wang et al., 2018) increase the accuracy percentage on the cited mainstream datasets. Also, the
utilization of larger backbone deep neural networks with increased layers and parameters has
facilitated the extraction of more complex features from the data, as the proposed by He et al.
(2016) and Sharir et al. (2021).

However, there are problems faced with its application. Challenges related to variations
in facial images, such as pose, aging, expressions and occlusions are a common problem. With
the onset of Deep Learning, other challenges like the need for large amount of data, label
noise presented in web-crawled datasets, and demographic disparity regarding gender and racial
concerns arises. Other emerging problem are the need for informed consent, required by the
legislation EU-GDPR (Voigt and Von dem Bussche, 2017). According to Boutros et al. (2023b)
many of these datasets, e.g., MS-Celeb1M and VGGFace2, are retracted due to credible privacy
and ethical concerns.

This movement gives growing importance for the facial recognition pipeline trained
with synthetic dataset. With the development of Generative adversarial networks, 3D rendering
models and diffusion models, there is an increasing interest in developing facial recognition
systems trained with synthetic data, by using one of these techniques. Kim et al. (2023) proposes
a diffusion model pipeline, called Dual Condition Face Generator DCFace. This pipeline consists
of two stages, (i) a sampling stage generating a new identity image, and (ii) a mixing stage
combining the generated image with a style image from a style bank, creating a final image that
blends both style and identity information. Using this approach, the authors significantly reduced
the synthetic to real domain gap. The method is described in figure 3.1.

Figure 3.1: The sampling approach starts with a given off the shelf generator, that outputs a face image 𝑋𝑖𝑑 , and a
style image 𝑋𝑠𝑡 𝑦 . The second difusion model receive those images and combine the identity from 𝑋𝑖𝑑 and the style
from 𝑋𝑠𝑡 𝑦 . By repeating this process multiple times, a labeled synthetic face dataset can be created. From Kim et al.
(2023)

On the other hand, Synface (Qiu et al., 2021) explores the performance gap between
models trained on synthetic and real face images, identifying poor intra-class variations and
domain gaps as key factors. To address these, the authors introduce identity mixup (IM) and
domain mixup (DM) techniques, conducting sampling with a controllable face synthesis model,
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that can easily manage different factors of synthetic face generation, including pose, expression,
illumination, the number of identities, and samples per identity, demonstrating significant
improvements in face recognition with synthetic data. The pipeline is displayed in Figure 3.2.

Figure 3.2: The proposed SynFace framework begins by integrating identity mixup into DiscoFaceGAN, resulting
in the Mixup Face Generator. This generator is capable of producing face images that exhibit a variety of identities,
including their intermediate states. Subsequently, these synthetic face images are combined with a limited number
of real face images through a process called domain mixup, which helps to mitigate the domain gap. After sampling,
the mixed face images are then fed into a feature extractor, which derives the corresponding features, that are used to
compose the margin based loss. From Qiu et al. (2021).

Bae et al. (2023) proposed a sate-of-the-art approach that uses 3D model with the
objective of synthesizing high fidelity facial images. By using a computer graphics pipeline and
heavy image augmentation, the authors significantly reduce the synthetic to real data accuracy gap.
They also fine-tune the network to with real images obtained with consent, and achieved similar
performance to models trained with real data only. The data augmentation used is described in
Figure 3.3.

Figure 3.3: Each row illustrates the same individual depicted with various accessory configurations (left figure).
These accessories encompass attire, eyewear, cosmetics (such as eyeshadow and eyeliner), as well as facial and head
adornments. Additionally, the color, density, and thickness of facial and head hair are randomized. The hairstyle is
altered only when the chosen accessory clashes with the original style. These images (right image) demonstrate how
the same face can appear markedly different based on pose, expression, lighting, background, and camera settings,
thereby promoting the network’s ability to learn a robust embedding. From Bae et al. (2023).

Another dataset, called GANDiffFace (Melzi et al., 2023) used a StyleGAN3 (Karras
et al., 2021) to generate synthetic images and further used transformation in the latent space
to control the generated attributes that serve as input to a diffusion model. This combination
generates faces with desired proprieties, like human face realism, controllable demographic
distributions, and realistic intra class variations. The Figure 3.4 illustrates the proposed pipeline.
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Figure 3.4: They first generate images containing limited intra class variations, using a GAN. In a second stage these
images are used to train a text-conditioned diffusion model that outputs images with realistic intra class variations,
that once filtered, will compose the final dataset. From Melzi et al. (2023).

The SFace, proposed by Boutros et al. (2022), is a synthetic dataset elaborated by class
conditional generative adversarial network, named StyleGAN2-ADA, developed by (Karras et al.,
2020). They used this dataset to train a facial recognition network under different settings:
multi-class classification, label-free knowledge transfer, and combined learning of multi-class
classification and knowledge transfer. The illustrative image is disposed in Figure 3.5.

Figure 3.5: They utilize the StyleGAN2 to generate the images. This method receives as input the identity labels, that
are embedded and concatenated with the latent variables. After sampling, they conducted training using multi-class
classification, knowledge transfer and combined learning. From Boutros et al. (2022).

Aiming to improve the previously mentioned work, the IDnet dataset, elaborated by
Kolf et al. (2023), was generated using a class-conditioned StyleGAN2-ADA. They integrate
the GAN min-max game with an identity separable loss, named ID3, and a domain adaptation
loss. This approach enables the generator to learn encoded identity information, generating
identity-separable synthetic samples, and minimizing the domain gap between synthetic and real
data distributions. The pipeline is described in Figure 3.6.
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Figure 3.6: A summary of the generator and discrimination training procedure. The models are trained concurrently,
where the updated pipelines are marked as green boxes. The identity driven loss and batch normalization statistics
are used to train the generator as an add to generator loss. After training, a synthetic face dataset is created, aligned
and cropped, and feed to FR model trained with margin-penalty based loss function. From Kolf et al. (2023).

Another work, proposed by (Boutros et al., 2023a), utilizes a diffusion model trained
in the latent space of a pre-trained autoencoder. The diffusion model is also conditioned on
identity context through feature representations obtained from a pre-trained face recognition
model. The authors introduce a cross-attention mechanism to inject the identity condition into
the intermediate representations of the diffusion model. The introduction of partial dropout in the
components of the identity context during training to prevent overfitting and increase intra-class
diversity was another advancement. The authors achieved state-of-the-art performances, in
mainstream datasets e.g. LFW. The pipeline is demonstrated in Figure 3.7.
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Figure 3.7: The illustration is divided into two segments. The upper segment details the training process, where a
denoising U-Net is guided by contextual information derived from a pre-trained Face Recognition model’s features.
This training occurs within the latent domain of a pre-trained Autoencoder, with the diffusion process providing
targets for the reverse learning sequence. The lower segment explains the sample creation process, where the trained
Diffusion Model can generate samples using three identity contexts: real, two-stage, or synthetic uniform. By
maintaining a fixed identity context and modifying the noise, diverse samples for the same identity are achievable.
From Boutros et al. (2023a).

Geissbühler et al. (2024) proposed a physics inspired approach, to generate the intraclass
and interclass variations. To sample a distribution of synthetic samples, they proposed a
method called inspired by the Langevin equation, that improves in an interactive way the set
of latent vectors, aiming for an optimally distributed synthetic latent vectors. Firstly, they
extract the synthetic samples embeddings, that were generated by random sampled latent vectors.
They introduce two quadratic loss functions: the first, inspired by granular mechanics, repels
embeddings up to a certain threshold, while the second pulls latent vectors towards the generator’s
average latent vector. This process iteratively increases inter-class embedding distances while
maintaining a compact latent space distribution for high-quality image generation. For the
intraclass variation, they proposed the Dispersion algorithm, that works similar to Langevin, but
works on the latent space. Another quadratic loss function is added to maintain the embeddings
of the variations close to a certain threshold. They also enhance the initialization procedure
adding a random linear combination of Covariate vectors before the first iteration. The solution
is described at Figure 3.8.
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Figure 3.8: For each identity 𝑎, a random vector 𝑧𝑎 is sampled and mapped to initial latent 𝑤 (0)
𝑎 . An image 𝑖𝑎

is generated from 𝑤𝑎 and its embedding 𝑒𝑎 computed. Loss functions on embedding space 𝐸 and latent space
𝑊 are used to update latents 𝑤

(𝑡 )
𝑎 → 𝑤

(𝑡+1)
𝑎 over 𝑁𝑖𝑡𝑒𝑟 iterations.This method is used to generate the interclass

variations(left figure). For each identity 𝑎 and variation 𝛼, initialize latent 𝑤𝛼(0)
𝑎 near 𝑤𝑟𝑒 𝑓

𝑎 (right figure). Losses
pull embeddings towards 𝑒𝑟𝑒 𝑓𝑎 , latents towards average 𝑤𝑎𝑣𝑔, and repel nearby latents. Repeat for all 𝑎 and 𝛼 over
𝑁𝑑𝑖𝑠𝑝_𝑖𝑡𝑒𝑟 iterations.This method is used to generate the intraclass variations. From Geissbühler et al. (2024).

HyperFace, proposed by Shahreza and Marcel (2024), is a novel approach to generating
synthetic face recognition datasets by framing the dataset creation as a packing problem within
the embedding space of a face recognition model, represented on a hypersphere. This method
formalizes the packing problem as an optimization task, solved using a gradient descent-based
approach, and employs a conditional face generator to synthesize face images from the optimized
embeddings. The resulting synthetic datasets are used to train face recognition models. The
explanation are present at the Figure 3.9.

Figure 3.9: The images are firstly generated with a synthesizer, its embeddings are computed, and the optimization
process is applied. As a result, the interclass variation is achieved and the embeddings are used to generate the final
dataset images. From Shahreza and Marcel (2024).

In contrast, Vec2face, elaborated by Wu et al. (2024), is composed of a feature-masked
encoder decoder architecture. Using vectors with low similarity as input, different identities
can be generated. Also, by weekly perturbing the identity vector, the intraclass variations are
applied. The method illustration is presented in Figure 3.10. They also proposed a gradient
descent method, that adjusts the vector values to generate images with designated attributes.

Figure 3.10: The IM feature is computed by a facial recognition model, and then it is expanded into a feature map.
The latter is processed by a feature mask autoencoder (fMAE), where the rows are randomly masked. Then they are
fed to an image decoder, that reconstructs the pixels. The training is conducted calculating the MSE and cosine
similarity between the reconstructed image and the ground truth, and the perceptual loss and GAN loss are used to
ensure a correct facial structure and increase the sharpness of the generated images. From Wu et al. (2024).
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Another approach, called Arc2face (Papantoniou et al., 2024), builds upon a stable
diffusion model, and adapted it to the ID generation, conditioned to the identity embeddings. They
focuses exclusively on ID vectors derived from ArcFace, a prominent face recognition model.
This approach allows the model to generate images that maintain strong identity consistency
without the need for textual input. The method is described in Figure 3.11.

Figure 3.11: The Arcface embedding are concatenated to the CLIP input, that outputs conditional embeddings that
are used for cross-attention control. The UNet and the encoder are optimized using a million scale dataset, and
further finetuned on a high resolution dataset, without any text annotations. From Papantoniou et al. (2024).

VairFace (Yeung et al., 2024) is another method, that also builds upon diffusion models
and CLIP models to generate the images and define the demographic labels, respectively. They
also refine the demographic labels using a face recognition model, applied afterward. For
generating the interclass diversity, Face Vendi Score Guidance is integrated to the diffusion
loss. To balance the intraclass identity preservation and diversity trade-off, they proposed the
Divergence Score Conditioning. A more detailed explanation about the method pipeline is
presented in Figure 3.12.

Figure 3.12: The training predictions for race (R*), gender (G*) and age (A) are outputs of a CLIP model. Next
to ensure Facial recognition consistency, its used a FR pipleine to refine the race and gender labels, as well as
computing the ID and divergence (DS) labels. These labels are used to train the diffusion models in stage 1 and 2.
The inference procedure consists of using the balanced synthetic identities provided in stage 1, filtered and processed,
to generated synthetic embeddings. These and randomly sampled A and DS are used as input to the second stage
diffusion model to generate the synthetic dataset, that a passed to the second filtering stage to create the filtered
dataset. From Yeung et al. (2024).

Kim et al. (2024) developed VigFace, that proposes pre-assigning virtual identities in
the feature space. The authors trained using real and virtual prototypes using a prominent loss
function (Arcface) and generated a feature space for both real and virtual identities. Subsequently,
they generated the synthetic identities using a diffusion model, by synthesizing virtual entities
from devised virtual prototypes. The method description is illustrated in Figure 3.13.
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Figure 3.13: The pipeline was trained with real prototypes indicated as𝑊𝑅, and 𝑘 prototypes for virtual IDs, denoted
as 𝑊𝑉 . The virtual embedding 𝑓 ′

𝐹𝑅
(𝑥 𝑗 ) is designed to simulate the distribution of real embeddings. Subsequently, a

diffusion model is used to generate the synthetic images based on the virtual prototypes. From Kim et al. (2024).

In respect to the same topic, new proposals were submitted to a competition event called
the Face Recognition Challenge in the Era of Synthetic Data (Melzi et al., 2024), where the
participants faced the challenges of training a pipeline with synthetic data using a combination
of DCFace (Kim et al., 2023) and GANDiffFace (Melzi et al., 2023) datasets and also using a
combination of real datasets and the synthetic ones on other sub task. It was asked to reduce
the synthetic to real performance gap and also contribute to the reduce the discrepancy in racial
and gender bias in facial recognition technology. As summary, the winners solutions proposes
pipelines trained with Adface (Kim et al., 2022) and Arcface (Deng et al., 2019a) loss functions
using a resnet (He et al., 2016) as backbone. There are also similar competition events, called
Synthetic Data for Face Recognition (SDFR) and a extension of the FRCSyn challenge.

The Table 3.1 summarizes all the previously described methods, and adds more detailed
information, such as the generator training dataset names and the number of images used to train,
generator type and name given, if it was trained with id labels (important due to competitions that
do not allowed id labels during training the generator), the number of images generated (based
on the selected dataset between the provided ones) and a brief method description.
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In the exploration of recent studies in facial recognition, it is evident that the field has
made significant strides, particularly with the integration of large-scale datasets and advanced
learning algorithms. Extensive databases like MS1MV2, Glint360k, and Webface260M have been
pivotal in enhancing face verification accuracy, enabling the development of more refined and
capable models. The innovation in loss functions such as ArcFace, CosFace, and AdaFace, along
with the adoption of deeper network architectures, has significantly improved feature extraction
and classification capabilities. Despite these advancements, challenges remain, particularly
concerning data variations in pose, aging, and expressions, and ethical concerns related to privacy
and demographic representation. These challenges highlight the need for continued focus on
improving training methodologies and data generation techniques, especially through synthetic
data to address current limitations.

Moving into the methodology section, it is outlined a series of reproducible strategies
for image preprocessing, training configurations, and evaluation protocols designed to maximize
the performance of facial recognition systems, reflecting the best practices derived from the
reviewed literature.
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4 METHODOLOGY

This chapter describes the methodology used to perform the proposed experiments. The section
4.1 describes the image preprocessing. The section 4.2 describes the training choices, including
the backbone used, loss function applied, augmentation used, training parameters and the training
datasets, resulted from the studied methods from section 3. The sections 4.3 describe the
evaluation datasets and the metrics used for evaluation.

4.1 IMAGE PREPROCESSING

Before training, it is necessary to crop and align images using a landmark detector. For this
work, it was employed the RetinaFace facial landmark detector, developed by Deng et al. (2019b).
Using the five landmark points detected, the face is cropped to a center region, and it is performed
alignment to all training images.

Additionally, normalization is applied, which is the process of scaling the pixel values of
an image to a specific range, typically to improve convergence during training and the performance
of the model. Normalization involves adjusting pixel values to have a mean of zero and a standard
deviation of one.

4.2 TRAINING CHOICES

4.2.1 Used Backbone

One of the most impressive forms of Artificial Neural Network architecture is the CNN. According
to Arandjelovic et al. (2016), in recent years, such networks have emerged as protagonists in
category recognition tasks such as object classification, scene recognition or object detection.
The basic principles of CNNs were introduced during the 1980s by LeCun et al. (1989, 1998) and
their recent success is largely due to advances in the computational power of GPUs in conjunction
with the availability of large labeled databases.

A very popular used architecture for facial recognition are the ResNets (He et al., 2016).
These networks are able to learn low/medium/high level features when increasing in depth,
respectively. This is possible due to the use of skip connections, which alleviate the vanishing
gradient problem encountered in training deep neural networks.

The chosen backbone for performing the task was the iResNet-101, introduced by
Duta et al. (2021), and one of the top-performing backbones for deep FR, according to Deng
et al. (2021). The authors improved the vanilla ResNet by changing the arrangement of the
components and subdividing the building blocks into three stages with the aim of improving
the flow of information through the network. They also introduced a projection shortcut that
reduces information loss and a convolution block that operates in a larger number of channels,
improving performance as this block is the only component responsible for learning spatial
patterns. Applying these changes provided consistent improvements in accuracy and training
convergence over the baseline.

4.2.2 Loss Function

The applied loss function is the ArcFace loss, developed by Deng et al. (2019a). A common loss
function used for facial recognition is the softmax loss. This function is also called cross-entropy
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loss, a commonly used loss function in classification tasks in machine learning. It is often used in
conjunction with softmax activation in the output layer of a neural network. The softmax function
takes a vector of real-valued scores (logits) and normalizes it into a probability distribution
over multiple classes. For classification, after applying softmax to the output layer of a neural
network, the resulting probabilities represent the model’s confidence in each class. Despite being
useful for closed-set classification problems, it is not discriminative enough for open-set facial
recognition problems. This loss is presented in equation 4.1.

𝐿 = − 1
𝑁

𝑁∑︁
𝑖=1

log ©« 𝑒
𝑊𝑇

𝑦𝑖
·𝑥𝑖+𝑏𝑦𝑖∑𝑁

𝑗=1 𝑒
𝑊𝑇

𝑗
·𝑥𝑖+𝑏 𝑗

ª®¬ (4.1)

The deep feature of the 𝑖-th example is represented by the variable 𝑥 ∈ R512. The
𝑊 𝑗 ∈ R512 represents the 𝑗-th column of 𝑊 ∈ R𝑑×𝑛. The bias term is represented by 𝑏 𝑗 ∈ R𝑛,
while 𝑁 and 𝑛 represent the batch size and class number.

The Arcface loss (Deng et al., 2019a) is defined by equation 4.3. This is a result of
rewriting the softmax in equation 4.1 by using the fact that 𝑊𝑇

𝑗
𝑥𝑖 = | |𝑊𝑇

𝑗
| | · | |𝑥𝑖 | | · cos(𝜃 𝑗 ). By

fixing 𝑏 𝑗 = 0 and using 𝐿2 normalization to | |𝑊 𝑗 | | = 1 and | |𝑥𝑖 | | = 𝑠, where 𝑠 represents a
hyper-sphere with radius 𝑠, see equation 4.2. After this, 𝑚 is the added angular margin to
the feature class softmax output. This margin results in improved intra-class consistency and
inter-class separation.

𝐿 = − 1
𝑁

𝑁∑︁
𝑖=1

log

(
𝑒𝑠(cos(𝜃𝑦𝑖 ))

𝑒𝑠(cos(𝜃𝑦𝑖 )) + ∑𝐶
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𝑠 cos 𝜃 𝑗𝑖

)
(4.2)
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log
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(4.3)

4.2.3 Augmentation Applied

To the training data, it was applied three different augmentations: Random Horizontal Flip,
RandAugment, and Random Erasing. The Random Horizontal flip technique refers to the process
of randomly flipping an image along its horizontal axis. By randomly flipping images, the model
is exposed to different perspectives, effectively increasing the size and diversity of the training
dataset without the need for additional data collection. Models trained with augmented data are
less likely to overfit and more likely to generalize well to unseen data, helping the model become
invariant to certain transformations and making it more robust to variations in the input data.

RandAugment, introduced by Cubuk et al. (2020), is a data augmentation technique
introduced to simplify and improve the process of augmenting images for training deep learning
models. This method aims to enhance the performance of models by applying a set of random
transformations to the training images, thereby increasing the diversity of the training data and
improving the model’s robustness and generalization capabilities. Unlike other augmentation
techniques that require a search over a large space of possible augmentations, RandAugment
simplifies the process by reducing the number of hyperparameters to tune. There are two
hyperparameters: the number of augmentation transformations to apply sequentially to each
image (N), and the magnitude or intensity of the transformations (M). This technique uses a fixed
set of predefined transformations such as identity, autoContrast, equalize, rotate, solarize, color,
posterize, contrast, brightness, sharpness, shear-x, shear-y, translate-x, translate-y.
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Random erasing involves randomly selecting a rectangular region within an image and
erasing its pixel values, effectively introducing occlusions or noise. The pixel values within the
selected region are either set to a constant value (e.g., zero) or replaced with random values.
The size and aspect ratio of the erased region are controlled by specific parameters, allowing for
flexibility in the augmentation process. By introducing occlusions, the model learns to focus on
the most discriminative parts of the image, making it more robust to partial occlusions and noise
in real-world scenarios.

For both augmentations, it uses the PyTorch transforms default parameters, applied
sequentially. The random horizontal flip can also be applied. In general, all the augmentations
combined enhance the model robustness and generalizability, resulting in accuracy gains.

4.2.4 Method Description

It was employed ArcFace as the loss function and iResNet101 as the backbone. These were
chosen, because is one of the top-performing models for deep FR (Deng et al., 2021). As dicussed
in section 4.2.3 images used for training were augmented. The models were trained using the
Insightface library. It was used the SGD optimizer, setting momentum to 0.9 and weight decay to
5 × 10−4. The learning rate was set to 0.02 and decayed at each iteration following the equation
4.4. (

1.0 − 𝑙
𝑡

1.0 − 𝑙−1
𝑡

)
(4.4)

The variables l and t represent the current iteration and the total number of iterations,
respectively. The model was trained for 20 epochs within a batch size of 128, on an NVIDIA
TITAN Xp with 12GB memory.

It was applied the same training configurations for all the studied works, despite VIGFace,
VariFace and Hyperface, that the results were taken from the article itself, as their dataset are
not yet publicly available. As a disclaimer, it was selected and trained datasets using a criteria,
which is the best accuracy for Iddif-Face, DCface, Digiface and Disco. In the case of IDiff-Face,
the selected database was the Uniform version, and for DCFace, the version with 1.3M images.
For Digiface and Disco, the one with the largest number of identities was selected. Also, for the
datasets Arc2face and Vec2face, the dataset with the number of images that are close to the other
datasets were taken. For the remaining ones, only one option was provided and used to train, or
the results were taken from the article itself, and adopted by the study.

4.3 EVALUATION PROTOCOL

For each selected dataset, it was performed a 10-fold cross verification test using the selected
datasets (i.e. LFW, CPLFW, CFPFP, CALFW, AGEDB, ĲBB, ĲBC). For the TinyFaceR1 and
TinyFaceR5, an identification protocol is performed, that is a one-to-many matching problem.

The Table 4.1 describes the datasets used for evaluation, the evaluation protocol and
their chalanges.

The metric used to evaluate the mainstream datasets (i.e. LFW, AGE, CFPFPFP, CPLFW,
CALFW) is the best accuracy. For the ĲBB and ĲBC datasets, the metric is the TPR at an FPR
of 0.01%. For the TinyFaceR1 and TinyFaceR5, the rank-1 and rank-5 accuracy is measured. It
was also used the ROC curves to evaluate the mainstream datasets, and ĲBB and ĲCB. These
curves were calculated using the function roc_curve from scikit-learn.
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Database Evaluation Protocol Challenges
LFW 3000 genuines and 3000

impostors
Uncontrolled conditions, varied poses and ex-
pressions

AGEDB 3000 genuines and 3000
impostors

Aging effects, expressions, pose variations

CFPFP 3500 genuines and 3500
impostors

Frontal-profile mismatches, pose variations

CPLFW 3000 genuines and 3000
impostors

Distinct poses, cross-pose matching

CALFW 300 genuines and 3000
impostors

Cross-age facial recognition, aging effects, varied
expressions, and poses

ĲBB 10,270 genuines and
8,000,000 impostors

Variations in pose, illumination, image quality,
low false positive rates

ĲBC 19,557 genuines and
15,638,932 impostors

Large-scale data, uncontrolled conditions, pose
variance, low false positive rates

TinyFaceR1 5,139 labelled facial
identities

Low resolution FR at large scales, variations in
occlusion and pose

TinyFaceR5 5,139 labelled facial
identities

Low resolution FR at large scales, variations in
occlusion and pose

Table 4.1: Summary of facial Recognition datasets, evaluation protocols, and their challenges.

In this chapter it was described the training methodology used to train the publicly
available dataset and described in the studied works (section 3). The evaluation is also described,
by evidencing the metrics and curves used to evaluate each dataset, on test datasets.
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5 RESULTS AND DISCUSSION

This chapter describes the results and discussion achieved in the comparative study. A discussion
about their advantages and disadvantages are provided.

The achieved results, for each test dataset and corresponding used metric to evaluate,
are presented in Table 5.1 and Table 5.2. The ROC curves for all verfication sets are presented in
Figures 5.1, 5.2 and 5.3. For VIGFace, VariFace, and Hyperface, the results were taken from the
article itself, as their dataset are not yet publicly available. This makes a difference, since the
training methodology is different, but for the sake of completeness, the original training results
were included. Also, as the articles do not report the results in the ĲBB, ĲBC, TinyFaceR1, and
TinyFaceR5 the mentioned methods were omitted from Table 5.2.

Dataset LFW CPFLW CFPFP CALFW AGEDB AVG
Webface4m (real) 99.81 94.68 98.50 95.91 97.48 97.28

Arc2Face 99.48 92.53 97.57 95.21 95.18 95.99
VairFace(*) 99.45 90.63 95.61 94.13 94.75 94.91

CASIA-WebFace (real) 99.25 89.65 97.07 93.33 94.40 94.74
VIGface(*) 99.15 88.88 96.66 92.22 92.73 93.93

DCFace 98.93 87.03 93.00 92.93 92.55 92.89
Vec2Face 98.83 87.20 91.08 93.18 93.30 92.72

HyperFace(*) 98.73 85.43 89.54 90.05 87.52 90.25
DisCo 99.03 76.53 84.17 92.98 91.60 88.86

IDiff-Face 97.31 74.50 79.12 85.63 77.78 82.87
Digiface 94.38 74.38 80.97 76.06 71.20 79.40

GANDiffFace 94.06 74.38 78.44 78.30 68.28 78.69
Idnet 92.58 73.48 76.08 77.13 67.96 77.45
Sface 92.52 72.33 73.57 76.66 70.28 77.07

Synface 81.36 61.78 65.85 64.10 60.66 66.75

Table 5.1: Performance result across selected datasets on mainstream datasets. * indicates that the results were taken
from the original article itself. The mainstream dataset are called Labelled Faces in the Wild (LFW), Cross-Pose
LFW (CPLFW), Celebrities in Frontal-Profile (CFP) (protocol FP), Cross-AgeLFW (CALFW), Age Database
(AGEDB).

An upper bound for the synthetic datasets compared is Webface4M (Zhu et al., 2021),
which is a subset version of Webface42M that has approximately 42 million images of 2M
identities, while Webface4M contains 4M images from 200K identities. It is an upper bound
because a real dataset and a better performance is obtained when training with this dataset in
all dataset protocols. It is also possible to verify this behavior on the ROC curves (Figures 5.1,
5.2, 5.3), for the verification datasets, where the yellow line (representing the TPR at fixed FPR
operational points), is always above the other lines in the graph, despite one occurrence where
the Arc2face method performed better on points very close to zero FPR on ĲBB (Figure 5.3),
but further Webface4M surpassed it.

The Arc2face dataset comes in sequence, achieving an avg accuracy of 95.99 on
mainstream datasets and 79.47 on the ĲB two variants and TinyFaceR1,R5, Tables 5.1, 5.2
respectively. The combination of diffusion backbone and effectively transform the text encoder
into a face encoder specifically tailored for projecting ArcFace embeddings into the CLIP latent
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Dataset ĲBB@0.01 ĲBC@0.01 TinyFace R1 TinyFace R5 AVG
Webface4m (real) 95.18 96.67 73.81 76.52 85.55

Arc2Face 89.10 92.66 65.71 70.41 79.47
CASIA-WebFace (real) 82.55 86.66 57.59 63.65 72.61

DCFace 79.79 83.56 53.88 60.13 69.34
Vec2Face 62.22 56.16 57.48 63.49 59.84

DisCo 59.24 62.01 51.15 58.20 57.65
IDiff-Face 48.90 50.27 45.86 54.85 49.97
Digiface 35.92 41.17 55.31 62.98 48.85

Idnet 45.46 49.69 44.44 54.80 48.60
Sface 8.92 4.59 35.30 43.88 23.17

Synface 0.19 0.18 45.54 54.58 25.12
GANDiffFace 0.61 0.54 39.80 45.81 21.69

Table 5.2: Performance result across selected datasets on IARPA Janus Benchmark-C (ĲBC), IARPA Janus
Benchmark-B (ĲBB), TinyFace R1, and TinyFace R5.

space, maked this a strong solution to the problem. It is also scalable, caplable of generating
a large number of images (i.e. the realeased dataset contatains 21M facial images from 1M
identities at a resolution of 448×448). However, it has its downsides, like the use of larges amount
of real data (i.e. 42M imgs for training and 1M imgs for fine tuning) the text encoder (Radford
et al., 2021) and the diffusion backbone (Rombach et al., 2022).

Due to that, the method falls into a category where it was not properly made for dealing
with the concerns regarding the use of web scrapped datasets, but for facial attribute augmentation.
This method was considered in the evaluation because it is an allowed method for submission to
competitions events (Melzi et al., 2024; DeAndres-Tame et al., 2024; Shahreza et al., 2024).

VairFace is 2-stage diffusion model, guided by identity features (e.g. gender and age)
produced by ViT-L-14 MetaCLIP model (Xu et al., 2023) and refined by IResnet-100 (Duta et al.,
2021). They achieved an avg accuracy of 94.91 on the mainstream datasets (Figure 5.1). They
also sample identities considering a more equitable demographic dataset. This is very relevant,
since is already known that celebrity datasets also have imbalanced racial distribution (e.g.,
84.5% of the faces in CASIA-WebFace are Caucasian faces), leading to non equitable recognition
accuracy for the under-represented racial groups. They improved over the real dataset that it was
originally trained one, that is the CASIA-WebFace, just losing in the CFPFP protocol 95.61 vs.
97.07, probably due to limited number of profile images generated. Considering the Webface4m
as an upper bound, the synthetic to real gap is 2.37.

Vigface proposed pre-assigning virtual identities in the feature space and guiding the
DiT-B (Peebles and Xie, 2023) using the virtual identities. The performance is closed to the
real dataset that the method was trained (i.e. CASIA-WebFace), with a gap of 0.81, probably
lower if trained with the methodology proposed in this work and described in section 4.2 (i.e.
ResNet-100 with Arcface loss function and augumented data).

The next evaluated dataset is DCface, a 2-stage diffusion model consisting of a sampling
stage and a mixer stage. It achieves an average accuracy of 92.89 on mainstream datasets and
69.34 on the ĲBB, ĲBC and TinyFaceR1,R5 (Tables 5.1 and 5.2). Compared to the dataset that
the generator was trained on (i.e. CASIA-WebFace) the gap on mainstream dataset is of 1.85,
while the gap ĲB and TinyFace families is of 3.27. Considering the ROC curves (Figures 5.1,
5.2 and 5.3), the method curve followed very closely the CASIA-Webface one, just in the CFPFP
protocol the difference were bigger. They also considered sampling a balanced demographically
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Figure 5.1: Achieved ROC curves on LFW, CALFW and AGEDB for the trained datasets. TPR means True Positive
Rate and FPR means False Positive Rate

Figure 5.2: Achieved ROC curves on CFPFP and CPLFW for the trained datasets. TPR means True Positive Rate
and FPR means False Positive Rate

Figure 5.3: Achieved ROC curves on ĲBB and ĲBC for the trained datasets. TPR means True Positive Rate and
FPR means False Positive Rate

distributed dataset. This method was allowed at the FRCSyn 1st and 2nd editions, but not allowed
in the SDFR competition (Shahreza et al., 2024), because it was trained using id labels.

Vec2face proposed an unique solution to the problem, that is a feature-masked encoder
decoder that uses a sampled vector as input and controls the face images and their attributes.
They trained their method on a subset of Webface4M, with 1M images, achieving an average
accuracy of 92.72 and 59.84 on the mainstream and ĲBB, ĲBC and TinyFaceR1, TinyFaceR5
(Tables 5.1 and 5.2). It is also possible to verify that the ROC curves (Figures 5.1, 5.2 and 5.3) is
not well behaved in comparison to DCFace and CASIA-Webface.

In sequence comes Hyperface, an optimization algorithm that is used to generate
embeddings of identities well spread across a hypersphere, further used to serve as guidance for
the Arc2face method. However, it is possible to verify that those embeddings are less effective
than the PCA generated ones (i.e. embedding sampling method for Arc2face method). This
have an upside that the learned embeddings are less related in similarity to the real data as the
PCA generated ones, because PCA are inherently linked to the actual data provided for the
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analysis. They achieved an average accuracy of 90.25 on mainstream datasets, and a gap to
CASIA-Webface of 4.49 (Table 5.1).

DisCo comes in sequence, and is based on the brownian motion of particles to generate
interclass and intraclass variations. This method achieved an average accuracy of 88.86 on
mainstream datasets and an average of 57.65 on ĲBB, ĲBC and TinyFace, configuring a gap to
CASIA-Webface of 5.88 and 14.96 respectively (Tables 5.1 and 5.2). Due to the use of a GAN,
named StyleGAN2 and a low training data regime (ie. FFHQ), they achieved worst results when
compared to diffusion models, due to characteristics inherent to these models.

IDiff-Face comes in sequence, wich is a diffusion model conditioned on identity context
to produce identity separable images. They achieve an average accuracy of 82.87 on mainstream
datasets and an average of 49.97 on the ĲBB, ĲBC and TinyFace protocols, bridging the
synthetic-to-real accuracy gap to 12.1 and 22.64 considering CASIA-Webface on the respectively
group of datasets (Table 5.1 and 5.2). This result reveals the potential that diffusion models
can have when generating images with variations in pose, age, expression, and illumination,
containing unique information. As stated in Kim et al. (2023), the diffusion models can generate
a bigger number of unique identities than GAN’s when the sample approach is random or guided
by identity features, which results in a dataset with more variety. Also, they use a pre-trained
model to extract embeddings that are used by the conditional generator model based on diffusion.
However, as identity labels were not used to train the face generator model, this dataset was
allowed in the SDFR competition and was adopted by the majority of the competitors.

Digiface proposed a unique solution to the problem, by using a computer graphics
pipeline to render the facial images. With this, they were able to achieve an average accuracy of
79.40 on mainstream datasets and an average of 48.85 on the ĲBB, ĲBC and TinyFace protocols,
bridging the synthetic-to-real accuracy gap to 15.34 and 23.76 considering CASIA-Webface on
the respectively group of datasets (Table 5.1 and 5.2). They achieve a higher value on the CFP-FP
dataset when compared to IDiff-Face, which indicates that profile images are more present
in the training dataset of this solution. However, this approach is extremely computationally
costly and might not be available for research. This solution also has the credit of not using
large-scale real face datasets to train some components of their pipeline, leaving unresolved
ethical problems. However, at its core, the challenge of creating complex synthetic data that
closely mirrors certain authentic references is akin to the chicken-and-egg dilemma. It may
be beneficial to reconceptualize this issue to highlight that synthetic data inherently relies on
genuine prior knowledge. Instead, emphasis should be placed on devising methods that ensure
the original data remains difficult to reconstruct, while also ensuring that the synthetic dataset
effectively captures a good enough representation of the reality (Geissbühler et al., 2024).

GANDiffFace face dataset resulted in an average accuracy of 78.69 on mainstream
datasets and an average of 21.69 on the ĲBB, ĲBC and TinyFace protocols (Tables 5.1 and 5.2).
They used StyleGAN3 to generate the images and further input those images into a diffusion model
(i.e., Dream Both), to generate the intra-class variations. The additional diffusion model enables
the dataset to have a more realistic intra-class variation. The authors also considered demographic
equitable sampling. However, this comes at cost of finetuning the diffusion model for each identity
generated. Also, the dataset do not main its position on the ĲBB,ĲBC and TinyFace protocols,
having difficult on operating on fixed FMR points and identifications scenarios.They applied
demographic equitable sampling. SFace, that is a dataset generated using a class conditioned
StyleGAN2-ADA achieved an average accuracy of 77.07 on mainstream datasets and an average
of 23.17 on ĲBC,ĲBB and TinyFace protocols (Tables 5.1 and 5.2).

An upgrade of Sface is IdNet, which achieved an average accuracy of 77.07 on
mainstream datasets and an average of 23.17 on ĲBC,ĲBB and TinyFace protocols (Tables 5.1
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and 5.2). According to the authors, “SFace suffers from relatively low identity separability which
might lead to less optimal face verification accuracies when such synthetic data is used to train
FR” (Kolf et al., 2023). To deal with this they integrate to the GAN min-max game and identity
separable loss, named ID3, and a domain adaptation loss to make the generator learn to identify
information encoded and generate more identity separable images. However, this comes with the
cost of using identity labels in training the generative framework.

Lastly, comes Synface, which employed DiscoFaceGAN (Deng et al., 2020) and identity
mixup and domain mixup techniques. The solution achieved an average accuracy of 66.75 on
mainstream datasets and an average of 25.12 on ĲBC,ĲBB and TinyFace protocols (Tables
5.1 and 5.2). The lower performance can be a result of the generator, that provides few unique
samples. Also, this work has the credit of being, one of the first to generate a synthetic dataset to
train a facial recognition model.
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6 CONCLUSION

In summary, synthetic data generation for facial recognition has seen notable advancements with
methods like diffusion models, Generative adversarial networks, and 3D rendering techniques that
aim to mimic the diversity and complexity of real-world datasets. Techniques such as DCFace’s
diffusion model and Synface’s mixup methods have started closing the performance gap between
synthetic and real data, improving accuracy while addressing ethical concerns associated with
using real identities. These approaches focus on enhancing intra-class variations and leveraging
synthetic data diversity to build robust facial recognition models without relying on real-world
data.

However, significant challenges remain, particularly regarding overfitting, computational
costs, and achieving proper demographic representation in synthesized datasets. Models like
HyperFace and Vec2Face have experimented with different strategies to ensure diversity and
authenticity, yet replicating the high performance of models trained with real data remains an
issue. Despite innovations like VairFace and Arc2Face’s identity-focused diffusion applications,
synthetic datasets still face limitations in realism and representation. Future research must focus
on reducing computational demands, maintaining ethical standards, and ensuring that synthetic
datasets effectively capture a wide range of demographic features to become an alternative to real
data in training facial recognition systems.
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